Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621975

RESUMO

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatias Alcoólicas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Pós , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína Beclina-1 , NF-kappa B/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/genética
2.
Aging (Albany NY) ; 16(7): 6147-6162, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507458

RESUMO

The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κß, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.


Assuntos
Ferroptose , Hepatopatias Alcoólicas , Fator 2 Relacionado a NF-E2 , Polissacarídeos , Animais , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Polissacarídeos/farmacologia , Ratos , Masculino , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Wolfiporia/química , Modelos Animais de Doenças
3.
Biochem Biophys Res Commun ; 704: 149690, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38387326

RESUMO

Alcohol-related liver disease (ALD) is a global healthcare concern which caused by excessive alcohol consumption with limited treatment options. The pathogenesis of ALD is complex and involves in hepatocyte damage, hepatic inflammation, increased gut permeability and microbiome dysbiosis. FOXO3 is a well-recognized transcription factor which associated with longevity via promoting antioxidant stress response, preventing senescence and cell death, and inhibiting inflammation. We and many others have reported that FOXO3-/- mice develop more severe liver injury in response to alcohol. In the present study, we aimed to develop compounds that activate FOXO3 and further investigate their effects in alcohol induced liver injury. Through virtual screening, we discovered series of small molecular compounds that showed high affinity to FOXO3. We confirmed effects of compounds on FOXO3 target gene expression, as well as antioxidant and anti-apoptotic effects in vitro. Subsequently we evaluated the protective efficacy of compounds in alcohol induced liver injury in vivo. As a result, the leading compound we identified, 214991, activated downstream target genes expression of FOXO3, inhibited intracellular ROS accumulation and cell apoptosis induced by H2O2 and sorafenib. By using Lieber-DeCarli alcohol feeding mouse model, 214991 showed protective effects against alcohol-induced liver inflammation, macrophage and neutrophil infiltration, and steatosis. These findings not only reinforce the potential of FOXO3 as a valuable target for therapeutic intervention of ALD, but also suggested that compound 214991 as a promising candidate for the development of innovative therapeutic strategies of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Proteína Forkhead Box O3 , Hepatopatias Alcoólicas , Animais , Camundongos , Antioxidantes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Etanol/toxicidade , Etanol/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína Forkhead Box O3/agonistas
4.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397045

RESUMO

Cannabidiol (CBD), a non-psychoactive phytocannabinoid abundant in Cannabis sativa, has gained considerable attention for its anti-inflammatory, antioxidant, analgesic, and neuroprotective properties. It exhibits the potential to prevent or slow the progression of various diseases, ranging from malignant tumors and viral infections to neurodegenerative disorders and ischemic diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral hepatitis stand as prominent causes of morbidity and mortality in chronic liver diseases globally. The literature has substantiated CBD's potential therapeutic effects across diverse liver diseases in in vivo and in vitro models. However, the precise mechanism of action remains elusive, and an absence of evidence hinders its translation into clinical practice. This comprehensive review emphasizes the wealth of data linking CBD to liver diseases. Importantly, we delve into a detailed discussion of the receptors through which CBD might exert its effects, including cannabinoid receptors, CB1 and CB2, peroxisome proliferator-activated receptors (PPARs), G protein-coupled receptor 55 (GPR55), transient receptor potential channels (TRPs), and their intricate connections with liver diseases. In conclusion, we address new questions that warrant further investigation in this evolving field.


Assuntos
Canabidiol , Cannabis , Doenças do Sistema Digestório , Hepatopatias Alcoólicas , Humanos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptores de Canabinoides , Hepatopatias Alcoólicas/tratamento farmacológico , Receptor CB1 de Canabinoide
5.
Curr Opin Gastroenterol ; 40(3): 134-142, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38362864

RESUMO

PURPOSE OF REVIEW: The intestinal microbiome and the gut-liver axis play a major role in health and disease. The human gut harbors trillions of microbes and a disruption of the gut homeostasis can contribute to liver disease. In this review, the progress in the field within the last 3 years is summarized, focusing on metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), autoimmune liver disease (AILD), and hepatocellular carcinoma (HCC). RECENT FINDINGS: Changes in the fecal virome and fungal mycobiome have been described in patients with various liver diseases. Several microbial derived metabolites including endogenous ethanol produced by bacteria, have been mechanistically linked to liver disease such as MASLD. Virulence factors encoded by gut bacteria contribute to ALD, AILD and HCC. Novel therapeutic approaches focused on the microbiome including phages, pre- and postbiotics have been successfully used in preclinical models. Fecal microbiota transplantation has been effective in attenuating liver disease. Probiotics are safe in patients with alcohol-associated hepatitis and improve liver disease and alcohol addiction. SUMMARY: The gut-liver axis plays a key role in the pathophysiology of liver diseases. Understanding the microbiota in liver disease can help to develop precise microbiota centered therapies.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Hepatite Alcoólica , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Probióticos , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Hepatopatias Alcoólicas/tratamento farmacológico , Probióticos/uso terapêutico , Microbioma Gastrointestinal/fisiologia
6.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305262

RESUMO

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Assuntos
Agaricales , Ascomicetos , Hepatopatias Alcoólicas , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Ascomicetos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Agaricales/metabolismo , Micélio/metabolismo
7.
J Ethnopharmacol ; 325: 117866, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana kurroo Royle is a medicinal plant mentioned as Traymana in Ayurveda. In the folklore, it is used to cure fever, stomach ache, skin diseases and liver disorders. However, limited reports are available on the therapeutic potential of Gentiana kurroo Royle against alcohol-induced liver damage. AIM OF THE STUDY: To assess the effectiveness of the hydroethanolic extract of Gentiana kurroo Royle rhizome (GKRE) against alcohol-induced liver injury and explore the mechanism of action. MATERIALS AND METHODS: GKRE was characterized using UHPLC-QTOF-MS/MS. The binding affinity of the identified compound was studied in silico. In vitro studies were performed in the Huh-7 cell line. An acute oral toxicity study (2 g/kg BW) of GKRE was done in rats following OECD 420 guidelines. In the efficacy study, rats were treated with 50% ethanol (5 mL/kg BW, orally) for 4 weeks, followed by a single intraperitoneal dose of CCl4 (30%; 1 mL/kg BW) to induce liver injury. After 4th week, the rats were treated with GKRE at 100, 200 and 400 mg/kg BW doses for the next fifteen days. The biochemical and antioxidant parameters were analyzed using commercial kits and a biochemistry analyzer. Histopathology, gene and protein expressions were studied using qRT PCR and western blotting. RESULTS: Thirteen compounds were detected in GKRE. Few compounds showed a strong interaction with the fibrotic and inflammatory proteins in silico. GKRE reduced (p < 0.05) the ethanol-induced ROS production and inflammation in Huh-7 cells. The acute oral toxicity study revealed no adverse effect of GKRE in rats at 2 g/kg BW. GKRE improved (p < 0.05) the body and liver weights in ethanol-treated rats. GKRE improved (p < 0.05) the mRNA levels of ADH, SREBP1c and mitochondrial biogenesis genes in the liver tissues. GKRE also improved (p < 0.05) the liver damage markers, lipid peroxidation and levels of antioxidant enzymes in the liver. A reduced severity (p < 0.05) of pathological changes, fibrotic tissue deposition and caspase 3/7 activity were observed in the liver tissues of GKRE-treated rats. Further, GKRE downregulated (p < 0.05) the expression of fibrotic (TGFß, αSMA and SMADs) and inflammatory markers (TNFα, IL6, IL1ß and NFκB) in the liver. CONCLUSION: GKRE showed efficacy against alcohol-induced liver damage by inhibiting oxidative stress, apoptosis, inflammation and fibrogenesis in the liver.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Gentiana , Hepatopatias Alcoólicas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Etanol/toxicidade , Gentiana/química , Rizoma/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
8.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299591

RESUMO

Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease worldwide, and comprises a spectrum of several different disorders, including simple steatosis, steatohepatitis, cirrhosis, and superimposed hepatocellular carcinoma. Although tremendous progress has been made in the field of ALD over the last 20 years, the pathogenesis of ALD remains obscure, and there are currently no FDA-approved drugs for the treatment of ALD. In this Review, we discuss new insights into the pathogenesis and therapeutic targets of ALD, utilizing the study of multiomics and other cutting-edge approaches. The potential translation of these studies into clinical practice and therapy is deliberated. We also discuss preclinical models of ALD, interplay of ALD and metabolic dysfunction, alcohol-associated liver cancer, the heterogeneity of ALD, and some potential translational research prospects for ALD.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Humanos , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Etanol , Fígado Gorduroso/metabolismo , Cirrose Hepática/patologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo
9.
Int J Biol Macromol ; 256(Pt 1): 128394, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013074

RESUMO

The primary objective of this study is to investigate the potential mechanism behind the protective effect of Cistanche deserticola polysaccharides (CP) against alcoholic liver disease (ALD). Multiple chromography techniques were employed to characterize CP from polysaccharide, the molecular weight distribution of polysaccharides, monosaccharide composition, isomeric hydrogen and isomeric carbon, in order to clarify the material basis of CP. To create the ALD mouse model, we utilized the well-established Lieber-DeCarli alcoholic liquid feed method. Findings from the study revealed that CP administration resulted in significant improvements in intestinal permeability, upregulation of barrier proteins expression, and reduced levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mouse liver and serum. Additionally, CP treatment reduced the presence of inflammatory cytokines both in serum and liver while enhancing the activity of antioxidant enzymes in the liver. Furthermore, CP effectively reduced alcohol-induced oxidative damage by downregulating Keap1 protein levels in the liver, leading to increased expression of Nrf2 protein. The 16S rDNA sequencing results revealed that CP significantly restored the intestinal microbiota composition in ALD mice. These findings establish a strong association between gut microbiota and liver injury indicators, highlighting the potential of CP in preventing and treating ALD by modulating the gut-liver axis.


Assuntos
Cistanche , Hepatopatias Alcoólicas , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo , Camundongos Endogâmicos C57BL
10.
J Ethnopharmacol ; 321: 117552, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072293

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine, the main factors related to alcoholic liver disease (ALD) are qi stagnation and blood stasis of the five viscera. Previously, we showed that the bioactive components of Alhagi honey have various pharmacological effects in treating liver diseases, but the influence of Alhagi honey on ALD (and its mechanism of action) is not known. AIM OF THE STUDY: To determine the efficacy of the main active component of Alhagi honey, the polysaccharide AHPN80, in ALD and to explore the potential mechanism of action. MATERIALS AND METHODS: AHPN80 was isolated from dried Alhagi honey and identified by transmission electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography. Venous blood, liver tissue, and colon tissue were collected in a mouse model of alcohol-induced acute liver injury. Histology, staining (Oil Red O, Alcian Blue-Periodic Acid Schiff) and measurement of reactive oxygen species (ROS) levels were used to detect histopathologic and lipid-accumulation changes in the liver and colon. Lipopolysaccharide (LPS) levels and the content of proinflammatory cytokines in serum were measured by enzyme-linked immunosorbent assays. Commercial kits were employed to detect biochemistry parameters in serum and the liver. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining kit was used to identify hepatocyte apoptosis. Expression of tight junction-associated proteins in colon tissues and nuclear factor erythroid 2-related factor 2/heme oxygenase-1/toll-like receptor-4/mitogen-activated protein kinase (Nrf2/HO-1/TLR4/MAPK) pathway-related proteins in liver tissues and HepG2 cells were analyzed by immunofluorescence or western blotting. RESULTS: In a mouse model of alcohol-induced acute liver injury, AHPN80 therapy: significantly improved liver parameters (cytochrome P450 2E1, alcohol dehydrogenase, aldehyde dehydrogenase, superoxide dismutase, malondialdehyde, glutathione peroxidase, catalase, total cholesterol, triglycerides, alanine transaminase, aspartate transaminase); reduced serum levels of LPS, interleukin (IL)-1ß, IL-6, and tumor necrosis faction-α; increased levels of IL-10 and interferon-gamma. AHPN80 reduced ALD-induced lipid accumulation and ROS production, improved alcohol-induced inflammatory damage to hepatocytes, and inhibited hepatocyte apoptosis. Immunofluorescence staining and western blotting suggested that AHPN80 might eliminate hepatic oxidative stress by activating the Nrf2/HO-1 signaling pathway, repair the intestinal barrier, inhibit the LPS/TLR4/MAPK signaling pathway, and reduce liver inflammation. CONCLUSIONS: AHPN80 may activate the Nrf2/HO-1 pathway to eliminate oxidative stress, protect the intestinal barrier, and regulate the TLR4/MAPK pathway to treat ALD in mice. AHPN80 could be a functional food and natural medicine to prevent ALD and its complications.


Assuntos
Mel , Hepatopatias Alcoólicas , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Estresse Oxidativo , Etanol/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
11.
J Med Chem ; 67(1): 728-753, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38156615

RESUMO

Alcohol use disorder (AUD) results in numerous disabilities and approximately 3 million deaths annually, caused mainly by alcoholic liver disease (ALD). Phosphodiesterase IV (PDE4) has emerged as an attractive molecular target for a new treatment for AUD and ALD. In this study, we describe the identification of 5-azaindazole analogues as PDE4 inhibitors against AUD and ALD. System optimization studies led to the discovery of ZL40 (IC50 = 37.4 nM) with a remarkable oral bioavailability (F = 94%), satisfactory safety, and a lower emetogenic potency than the approved PDE4 inhibitors roflumilast and apremilast. Encouragingly, ZL40 exhibited AUD therapeutic effects by decreasing alcohol intake and improving acute alcohol-induced sedation and motor impairment. Meanwhile, ZL40 displayed the potential to alleviate alcoholic liver injury and attenuate inflammation in the NIAAA mice model. These results showed that ZL40 is a promising compound for future drug development to treat alcohol-related diseases.


Assuntos
Alcoolismo , Hepatopatias Alcoólicas , Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Alcoolismo/tratamento farmacológico , Hepatopatias Alcoólicas/tratamento farmacológico , Etanol/uso terapêutico , Consumo de Bebidas Alcoólicas
12.
Front Biosci (Landmark Ed) ; 28(11): 309, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38062827

RESUMO

BACKGROUND: Alcohol abuse leads to alcoholic liver disease (ALD), for which no effective treatment is yet known. Gentiana Scabra Bge is a traditional Chinese medicine; its extract has a significant liver protection effect, but its effects on the mechanism of improving alcohol-induced toxicity remain unclear. Therefore, this study used cell and mouse models to investigate how Gentiana Scabra Bge extract (GSE) might affect the TLT4/NF-κB inflammation pathway in ALD. METHODS: In mice, we induced the alcoholic liver injury model by applying alcohol and induced the inflammatory cell model by lipopolysaccharide (LPS)-induced macrophages. Using an enzyme-linked immunosorbent assay (ELISA) kit, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured in liver tissue; we also performed histological analysis of liver tissue sections to assess the hepatoprotective effect of GSE on alcohol. Using real-time fluorescence quantification, we determined the expression of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA levels; we used Western blotting to detect the expression of TLR4/NF-κB signaling pathway-related proteins. RESULTS: We demonstrate that GSE decreased AST and ALT activity, ameliorated liver dysfunction, decreased cytokine levels, and reduced LPS-induced cellular inflammation. In addition, GSE protected mouse liver cells from the inflammatory response by reducing alcohol-induced liver pathological damage and downregulating genes and proteins such as nuclear factors. CONCLUSIONS: GSE can attenuate liver injury in mice through the TLR4/NF-κB pathway by inhibiting the activation of nuclear factors.


Assuntos
Gentiana , Hepatopatias Alcoólicas , Animais , Camundongos , Gentiana/química , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , NF-kappa B/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
13.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138493

RESUMO

This study's objective was to examine the protective effect and mechanism of a novel polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and purified by DEAE-52 and Sephacryl S-400. Structural features were determined using high-performance liquid chromatography, ion exchange chromatography and Fourier-transform infrared analysis. Additionally, alcoholic liver disease (ALD) mice were established to explore the hepatoprotective activity of AYP (50, 100 and 200 mg/kg/d). Here, our results showed that AYP presented high purity with a molecular weight of 4.64 × 105 Da. AYP was composed of galacturonic acid, galactose, glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose (molar ratio: 39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1). Notably, AYP remarkably reduced liver function impairment (alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC)), nitric oxide (NO) and malondialdehyde (MDA) of the liver and enhanced the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (gGSH)) in mice with ALD. Meanwhile, the serum level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were reduced in ALD mice treated by AYP. Furthermore, the AYPH group was the most effective and was therefore chosen to further investigate its effect on the intestinal microbiota (bacteria and fungi) of ALD mice. Based on 16s rRNA and ITS-1 sequencing data, AYP influenced the homeostasis of intestinal microbiota to mitigate the damage of ALD mice, possibly by raising the abundance of favorable microbiota (Muribaculaceae, Lachnospiraceae and Kazachstania) and diminishing the abundance of detrimental microbiota (Lactobacillus, Mortierella and Candida). This discovery opens new possibilities for investigating physiological activity in A. cornea var. Li. and provides theoretical references for natural liver-protecting medication research.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Animais , RNA Ribossômico 16S , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/patologia , Fígado , Polissacarídeos/química
14.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003718

RESUMO

Alcohol use accounts for a large variety of diseases, among which alcoholic liver injury (ALI) poses a serious threat to human health. In order to overcome the limitations of chemotherapeutic agents, some natural constituents, especially polysaccharides from edible medicinal plants (PEMPs), have been applied for the prevention and treatment of ALI. In this review, the protective effects of PEMPs on acute, subacute, subchronic, and chronic ALI are summarized. The pathogenesis of alcoholic liver injury is analyzed. The structure-activity relationship (SAR) and safety of PEMPs are discussed. In addition, the mechanism underlying the hepatoprotective activity of polysaccharides from edible medicinal plants is explored. PEMPs with hepatoprotective activities mainly belong to the families Orchidaceae, Solanaceae, and Liliaceae. The possible mechanisms of PEMPs include activating enzymes related to alcohol metabolism, attenuating damage from oxidative stress, regulating cytokines, inhibiting the apoptosis of hepatocytes, improving mitochondrial function, and regulating the gut microbiota. Strategies for further research into the practical application of PEMPs for ALI are proposed. Future studies on the mechanism of action of PEMPs will need to focus more on the utilization of multi-omics approaches, such as proteomics, epigenomics, and lipidomics.


Assuntos
Hepatopatias Alcoólicas , Plantas Medicinais , Humanos , Plantas Comestíveis , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo
15.
Food Funct ; 14(21): 9920-9935, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37853829

RESUMO

The aim of this study was to evaluate the intervention effect of the potential probiotic Kluyveromyces marxianus YG-4 isolated from Tibetan kefir grains on alcoholic liver disease (ALD). Eight-week-old male C57BL/6J mice were fed with a Lieber-DeCarli (LDC) diet containing ethanol with a progressively increasing concentration from 1% to 4% (vol/vol) to establish an ALD mouse model. Our results suggested that K. marxianus treatment improved ALD, as demonstrated by the reduction of serum ALT and AST levels and the suppression of TLR4/NF-κB-mediated inflammatory response in the liver. K. marxianus administration significantly elevated antioxidant activities of SOD, CAT and GSH-Px, and reduced the MDA level in mice. K. marxianus supplementation repaired the gut barrier by increasing tight junction proteins and the number of goblet cells in the colon of ALD mice. In addition, treatment with K. marxianus restored alcohol-induced gut dysbiosis. Specifically, K. marxianus administration depleted the abundance of Lactobacillus, Coriobacteriaceae_UCG-002 and Candida, while increased that of Allobaculum, Dubosiella and Epicoccum in mice. Our findings open new possibilities for K. marxianus application in ALD treatment.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Probióticos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Etanol/efeitos adversos
16.
Front Endocrinol (Lausanne) ; 14: 1229777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795374

RESUMO

Introduction: Ganshu Nuodan is a liver-protecting dietary supplement composed of Ganoderma lucidum (G. lucidum) spore powder, Pueraria montana (Lour.) Merr. (P. montana), Salvia miltiorrhiza Bunge (S. miltiorrhiza) and Astragalus membranaceus (Fisch.) Bunge. (A. membranaceus). However, its pharmacodynamic material basis and mechanism of action remain unknown. Methods: A mouse model of acute alcohol liver disease (ALD) induced by intragastric administration of 50% alcohol was used to evaluate the hepatoprotective effect of Ganshu Nuodan. The chemical constituents of Ganshu Nuodan were comprehensively identified by UPLC-QTOF/MS, and then its pharmacodynamic material basis and potential mechanism of action were explored by proteomics and network pharmacology. Results: Ganshu Nuodan could ameliorate acute ALD, which is mainly manifested in the significant reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and malondialdehyde (MDA) content in liver and the remarkably increase of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver. Totally 76 chemical constituents were identified from Ganshu Nuodan by UPLC-QTOF/MS, including 21 quinones, 18 flavonoids, 11 organic acids, 7 terpenoids, 5 ketones, 4 sterols, 3 coumarins and 7 others. Three key signaling pathways were identified via proteomics studies, namely Arachidonic acid metabolism, Retinol metabolism, and HIF-1 signaling pathway respectively. Combined with network pharmacology and molecular docking, six key targets were subsequently obtained, including Ephx2, Lta4h, Map2k1, Stat3, Mtor and Dgat1. Finally, these six key targets and their related components were verified by molecular docking, which could explain the material basis of the hepatoprotective effect of Ganshu Nuodan. Conclusion: Ganshu Nuodan can protect acute alcohol-induced liver injury in mice by inhibiting oxidative stress, lipid accumulation and apoptosis. Our study provides a scientific basis for the hepatoprotective effect of Ganshu Nuodan in acute ALD mice and supports its traditional application.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Camundongos , Animais , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteômica , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Etanol/metabolismo , Etanol/uso terapêutico , Glutationa/metabolismo
17.
Eur Rev Med Pharmacol Sci ; 27(19): 9296-9308, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37843343

RESUMO

Ferroptosis is a novel mechanism of programmed cell death characterized by an iron overload-induced lipid peroxidation cascade. The incidence of alcoholic liver disease (ALD) is rising globally, contributing to markedly high morbidity and mortality. ALD pathogenesis is an intricate and continuously evolving process. Several basic and clinical investigations have established a correlation between ferroptosis and ALD initiation and progression. Additionally, anti-ferroptosis drugs have demonstrated effectiveness in ameliorating alcohol-induced liver injury. This review aims to provide an overview of recent advancements in ferroptosis research pertaining to ALD, encompassing imbalance of antioxidant systems, iron overload, autophagy, mitochondria, epigenetic changes, and prospective therapeutic drugs targeting ferroptosis. Our aim is to reveal the potential of ferroptosis-related diagnoses and therapeutic interventions for the treatment of ALD.


Assuntos
Ferroptose , Sobrecarga de Ferro , Hepatopatias Alcoólicas , Humanos , Hepatopatias Alcoólicas/tratamento farmacológico , Apoptose , Etanol , Sobrecarga de Ferro/tratamento farmacológico , Peroxidação de Lipídeos
18.
Phytomedicine ; 120: 155055, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678053

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is characterized by the disturbance of bile acids homeostasis, which further deteriorates ALD. Bile acid metabolism and its related signal molecules have become new therapeutic targets for alcoholic liver disease. This study aimed to investigate the impact of kaempferol (KAE) on ALD and elucidate its underlying mechanisms. METHODS: C57BL/6 N mice were utilized to establish Binge-on-Chronic alcohol exposure mice model. KAE was administered as an interventional drug to chronic alcohol-fed mice for four weeks to assess its effects on liver damage and bile acid metabolism. And Z-Guggulsterone (Z-Gu), a global FXR inhibitor, was used to investigate the impact of intestinal FXR-FGF15 signal in ALD mice. Additionally, intestinal epithelial cells were exposed to alcohol or specific bile acid to induce the damage of FXR activity in vitro. The dual luciferase activity assay was employed to ascertain the interplay between KAE and FXR activity. RESULTS: The results indicated that KAE treatment exhibited a significant hepatoprotective effect against chronic alcohol-fed mice. Accompanied by the intestinal FXR activation, the administration of KAE suppressed hepatic bile acid synthesis and promoted intestinal bile acid excretion in chronic ALD mice. And the notable alterations in total bile acid levels and composition were observed in mice after chronic alcohol feeding, which were reversed by KAE supplementation. And more, the protective effects of KAE on ALD mice were deprived by the inhibition of intestinal FXR activation. In vitro experiments demonstrated that KAE effectively activated FXR-FGF15 signaling, mitigated the damage to FXR activity in intestinal epithelial cells caused by alcohol or specific bile acids. Additionally, luciferase activity assays revealed that KAE directly promoted FXR expression, thereby enhancing FXR activity. CONCLUSION: KAE treatment inhibited hepatic bile acids synthesis, maintained bile acids homeostasis in ALD mice by directly activating intestinal FXR-FGF15 signaling, which effectively alleviated liver injury induced by chronic alcohol consumption.


Assuntos
Quempferóis , Hepatopatias Alcoólicas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Quempferóis/farmacologia , Hepatopatias Alcoólicas/tratamento farmacológico , Etanol , Ácidos e Sais Biliares , Luciferases
19.
PeerJ ; 11: e15977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727691

RESUMO

Alcohol-related liver disease (ALD) is chronic liver damage caused by long-term heavy drinking with, extremely complicated pathogenesis. The current studies speculated that excessive alcohol and its metabolites are the major causes of liver cell toxicity. Autophagy is evolutionarily conserved in eukaryotes and aggravates alcoholic liver damage, through various mechanisms, such as cellular oxidative stress, inflammation, mitochondrial damage and lipid metabolism disorders. Therefore, autophagy plays an critical role in the occurrence and development of ALD. Some studies have shown that traditional Chinese medicine extracts improve the histological characteristics of ALD, as reflected in the improvement of oxidative stress and lipid droplet clearance, which might be achieved by inducing autophagy. This article reviews the mechanisms of quercetin, baicalin, glycycoumarin, salvianolic acid A, resveratrol, ginsenoside rg1, and dihydromyricetin inducing autophagy and their participation in the inhibition of ALD. The regulation of autophagy in ALD by these traditional Chinese medicine extracts provides novel ideas for the treatment of the disease; however, its molecular mechanism needs to be elucidated further.


Assuntos
Hepatopatias Alcoólicas , Medicina Tradicional Chinesa , Humanos , Autofagia , Hepatopatias Alcoólicas/tratamento farmacológico , Etanol , Eucariotos
20.
Funct Integr Genomics ; 23(3): 261, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530875

RESUMO

As alcohol consumption increases, alcoholic liver disease (ALD) has become more popular and is threating our human life. In this study, we found mulberry fruit extract (MFE) repaired alcohol-caused liver diseases by regulating hepatic lipid biosynthesis pathway and oxidative singling in alcoholically liver injured (ALI) rats. MFE administration inhibited hepatic lipid accumulation and improved liver steatosis in ALI rats. MFE also enhanced the antioxidant capacity and alleviated the inflammatory response by increasing the activities of antioxidant enzymes and decreasing the contents of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. Additionally, MFE regulated the expression of miRNA-155 and lipid metabolism-related PPARα protein in rats. Both miR-155 and PPARα play important roles in liver function. The results indicate that MFE has hepatoprotective effects against ALI in rats.


Assuntos
Hepatopatias Alcoólicas , MicroRNAs , Morus , Humanos , Ratos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Morus/metabolismo , Metabolismo dos Lipídeos , Frutas/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lipídeos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...